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Dr. Diego Calvanese

Title: Virtual Knowledge Graphs for Data Access and Integration

Abstract

Recently, semantic technologies have been successfully deployed to overcome the typical difficulties
in accessing and integrating data stored in different kinds of legacy sources. In particular, knowledge
graphs are being used as a mechanism to provide a uniform representation of heterogeneous
information. Such graphs represent data in the RDF format, complemented by an ontology, and can
be queried using the standard SPARQL language. We consider the Virtual Knowledge Graph (VKG)
paradigm, where the graph is exposed virtually by means of declarative mappings that specify how to
populate ontology classes and properties in terms of suitable queries over the data sources. In the
talk, we illustrate the principles underlying the VKG approach to data access and integration. We then
present recent developments in this area concerning the access to different kinds of data sources, and
we describe some significant use cases where VKGs have been successfully deployed.

Biography

Diego Calvanese is a full professor at the Research Centre for Knowledge and Data, Free University of
Bozen-Bolzano (Italy), where he leads the Intelligent Integration and Access to Data (In2Data) research
group. He is the Director of the Smart Data Factory (SDF) technology transfer lab of the Faculty of
Computer Science at NOI Techpark in Bolzano. He is also Wallenberg Guest Professor in Artificial
Intelligence for Data Management at Umea University (Sweden). His research interests concern
foundational and applied aspects in Artificial Intelligence and Databases, notably formalisms for
knowledge representation and reasoning, Virtual Knowledge Graphs for data management and
integration, Description Logics, Semantic Web, and modeling and verification of data-aware
processes. He is the author of more than 350 refereed publications, including ones in the most
prestigious venues in Artificial Intelligence and Databases, with 33000 citations and an h-index of 71,
according to Google Scholar. He is a Fellow of the European Association for Artificial Intelligence
(EurAl) and a Fellow of the ACM. He is the ideator and a co-founder of Ontopic, the first spin-off of
the Free University of Bozen-Bolzano, founded in 2019, and developing solutions and technologies for
data management and integration based on Virtual Knowledge Graphs.
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Dr. Ebrahim Bagheri

Title: Computational Social Semantics for Mining Actionable
Insights

Abstract

The influence of social media platforms on many aspects of our personal and societal lives has given
rise to a host of computational methods that analyze social data. In this talk, | will motivate the need
for computational semantics, i.e., automated sense making of social user generated content, in order
to enable a deeper analysis of social content. | will present my group's approach to grounding social
content in semantics despite their challenging characteristics including being anti grammatical, noisy
and lacking in context. | will then show how capturing the semantics of social content can lead to a
range of methods for micro (user level) and macro (community-level) analysis of social media content,
as well as allowing for performing natural experiments through observational studies. | will provide
impactful applications of our work in the healthcare domain such as maternal mental health and
knowledge synthesis in the medical literature.

Biography

Ebrahim Bagheri is an Associate Professor in the Department of Electrical, Computer and Biomedical
Engineering at Ryerson University. He holds a Canada Research Chair (Tier Il) in Software and Semantic
Computing as well as an NSERC Industrial Research Chair in Social Media Analytics. He works on
computational models for the semantic analysis of highly unstructured textual content in order to
interpret the meaning behind surface-level human communication, leading to highly efficient
information processing and management tools and techniques. His publications have appeared in top-
tier venues such as IP&M, Information Retrieval Journal, CIKM, WSDM, and ECIR. Ebrahim has been
awarded the NSERC Synergy Award for Innovation for his long-standing impactful university-industry
collaborations, as well as the Professional Engineer's Ontario Young Engineer of the Year award for
achievements not only in career, but also in community and professional participation.
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Dr. Domenico Potena

Title: Discovering Anomalous Behavior from Process Event Logs

Abstract

Nowadays, information systems, while supporting daily activities, typically collect data on executed
processes (ranging from production to decision-making ones) in event logs. These data store
invaluable information about user (or organization) behavior that can be exploited to monitor and
improve performance. In order to derive insights on a process, several techniques have been
developed within the Process Mining discipline, whose goal consists in discovering, monitoring and
improving a given process exploiting data generated during process execution. Among them,
conformance checking allows organizations to compare process executions against a process model
representing the normative behavior. Most of the existing techniques, however, are only able to
pinpoint where individual process executions deviate from the normative behavior, without
considering neither possible correlations among occurred deviations nor their frequency. Moreover,
the actual control-flow of the process is not taken into account in the analysis. Neglecting possible
parallelisms among process activities can lead to inaccurate diagnostics. In this talk, | will introduce
Process Mining techniques and in particular the conformance checking. Then, | will present an
approach to extract anomalous frequent patterns from historical logging data. The extracted patterns
can exhibit parallel behaviors and correlate recurrent deviations that have occurred in possibly
different portions of the process, thus providing analysts with a valuable aid for investigating
nonconforming behaviors.

Biography

Domenico Potena received the M.Sc. degree in electronic engineering from the University of Ancona,
Italy, in 2001, and the Ph.D. degree in Information Systems Engineering from the Polytechnic
University of Marche, Ancona, in 2004. He is an Associate Professor with the Department of
Information Engineering, Polytechnic University of Marche, where he was a Postdoctoral Fellow from
June 2005 to October 2008, and then Researcher with the Department of Computer Science,
Management and Automation Engineering from November 2008 to June 2019. He has authored more
than 140 papers. His research interests include knowledge discovery in databases, data mining, big
data, process mining, data warehousing, and information systems.”




Dr. Mehdi Elahi

Title: Preference Elicitation in Recommender Systems

Abstract

Choosing the right product to consume is nowadays a challenging problem due to the growing number
of products and services. While increasing the number of choices provides an opportunity for a user
to find the products satisfying her personal needs, it may at the same time overwhelm her by providing
too many choices. Recommender Systems tackle this problem by providing to a user personalized
suggestions that can match her particular taste rather than the mainstream taste. The accuracy of
recommender systems largely depends on three factors: the quality of the prediction algorithm, and
the quantity and quality of available user preferences. While research in the field of recommender
systems often concentrates on improving prediction algorithms, even the best algorithms will fail if
they are fed poor quality preference data during training. Preference Elicitation in recommender
systems aims to remedy this problem by focusing on obtaining better quality data that more aptly
reflects a user’s preferences. In an attempt to do that, a preference elicitation strategy selects the
best items to be presented to the user in order to acquire her preferences and hence improve the
output of the recommender system. In this talk, | will focus on the different forms of preference
elicitations in recommender systems in order to address a range of grand challenges and discuss the
potential solutions that have shown to be effective in mitigating such challenges.

Biography

Mehdi Elahi is an Associate Professor (with a permanent contract) at the University of Bergen, one of
the leading research and educational institutes in Norway. With nearly 20000 students and thousands
of professors and research scholars, the University of Bergen has been ranked top 200 worldwide, in
both Times and QS International rankings 2020. Before joining this university, in 2014, Mehdi Elahi has
obtained his Ph.D. degree in Computer Science and since then, he has published more than 70 peer-
reviewed journal and conference publications. His current #citation is 1700+ and his H-index is 20. His
research has been mainly focused on Al, Data Science, and Cognitive Science, with an emphasis on
their potential industrial applications such as on Recommender Systems. He has also co-invented and
co-coowned an Al-related US-patent. Mehdi Elahi has been involved in the authorship of several EU
grant proposals such as the large-scale grants, recently funded with a budget of 30 Million Euro, where
he will serve as WP Leader for 8 years. Before that, he has received prestigious research credits from
giant IT industries (i.e., Amazon and Google). His research findings have been published in some of the
most prestigious reference literature of the field (e.g., Recommender Systems Handbook). One of his
journal articles has been the second most cited paper of a top Elsevier journal. He has organized
International Data Challenges together with top companies (i.e., Spotify and XING).




Dr. Hamid Reza Vaezi Jose

Title: Deep Learning on the Cloud vs on the Edge

Abstract

With the introduction of deep learning, artificial intelligence is steadily making its way into new
applications such as autonomous driving, augmented reality or achieve better quality in other
applications such as customer support, fraud detection, speech recognition and translation, image and
video analysis and enhancement.Because of the nature of deep learning which requires significant
computational capabilities, it is rational for many applications to be run on cloud-based infrastructure.
The top cloud computing platforms are all betting big on democratizing artificial intelligence including
both hardware and on-demand models. Some deep learning models require running on cloud due to
the size of the model or processing time and some others do so because of business justifications.
On the other hand, there are applications where low-latency requirements of deep learning make us
run it on edge devices. The edge can also provide additional benefits in terms of privacy, bandwidth
efficiency, and scalability which could be vital for some applications. However, edge devices are less
powerful than cloud servers, and many are subject to energy constraints. Hence, new resource and
energy-oriented deep learning models are required.In this talk, we will go through common deep
learning models for real world applications to see if they need to be run on the cloud or the edge. We
also go through available options for both cloud and edge. Finally, we discussed research and practical
solutions for preparing a model to be run on edge.

Biography

Dr. Hamid Reza Vaezi Jose received the B.Sc. and M.Sc. degrees in Computer Engineering from Sharif
University of Technology, Iran, in 2006 and 2008, respectively. He then received his PhD from the
school of Computer Science at Simon Fraser University, Vancouver in 2013. Next, he joined Flyover
R&D team at Apple Inc. just after graduation. He then joined the Applied Science group at Microsoft
Research in January 2017 as a senior research scientist. His research interests include image
processing, computer vision, machine learning, color and illumination.




Dr. Babak Khalaj

Title: 5G Networks: Opportunities and Challenges

Abstract

After a decade of research and standardization, the 5G network has finally been operational in various
parts of the world since last year. In this lecture, we will have an overview of the key components of
this network and its new aspects compared to previous traditional networks. As we will see, there is
still a long way to go to launch all the dimensions required in the initial definition of 5G, and the
practical realization of some of these key features in practice will be left to future generations of
mobile networks. In the following, we will examine the main opportunities of this technology in the
country, along with the corresponding challenges. Overall, we will see that the new space resulting
from the advent of 5G in the country will undoubtedly result in fundamental changes in the ecosystem
and configuration of key players in mobile networks. In this regard, our young generation of
researchers and engineers will benefit from a deep understanding of 5G network in the field of
telecommunications and computers, to play a profound role in the evolution of our country's
telecommunications in the years to come.

Biography

Babak H. Khalaj received his B.Sc. degree from Sharif University of Technology, Tehran, Iran, in 1989,
and the M.Sc. and Ph.D. degrees from Stanford University, Stanford, CA, in 1993 and 1996,
respectively, all in Electrical Engineering. He joined KLA-Tencor in 1995 as a Senior Algorithm Designer
working on advanced processing techniques for signal estimation. From 1996 to 1999, he was with
Advanced Fiber Communications and |kanos Communications. Since then, he has been a Senior
Consultant in the area of Data Communications, and a visiting professor at CEIT, San Sebastian from
2006 till 2007. Professor Khalaj has also been the recipient of Alexander von Humboldt Fellowship in
the year 2007-2008 and Nokia Visiting Professor Fellowship in 2018. He is the author of four U.S.
patents and many papers in signal processing and digital communications.
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A Geometric Algorithm for Fault-Tolerant
Classification of COVID-19 Infected People

Farnaz Sheikhi
Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
f.sheikhi@kntu.ac.ir

Sharareh Alipour
School of Computer Science, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran

alipour@ipm.ir

Abstract

As the world is struggling against COVID-19 pandemic, and unfortunately no certain treatments
are discovered yet, prevention of further transmission by isolating infected people has become
an effective strategy to overcome this outbreak. That is why scaling up COVID-19 testing is
strongly recommended. However, depending on the time tests are performed, they may have
a high rate of false-negative results. This inaccuracy of COVID-19 testing is a challenge against
controlling the pandemic. Therefore, in this paper we propose a geometric classification
algorithm that is fault-tolerant to handle the inaccuracy of tests. So, in a metropolis of n people,
let w + r be the number of cases that are tested, where r is the number of positive, while w is
the number of negative COVID-19 cases, and k is an upper bound on the number of false-
negative COVID-19 cases. The proposed algorithm takes O(r - (log r + log w) + w3 + w log(hR))
time for isolating all positive cases together with at most k (according to the rate of error of
testing) possibly positive (false-negative) cases from the rest of the people. The term hR in the
time complexity is the size of convex hull of the set of positive cases, and obviously k 2 O(w).
For simplicity of this isolation, we consider a simple convex shape (a triangle) for this
classification algorithm.

Keywords: COVID-19, Transmissibility, Diagnostic Tests, False-Negative Reactions,
Classification algorithm, Compute.
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Abstract

Using Wireless Network-on-Chip (WiNOC) for designing the multicore System-on Chips can
significantly decrease the latency and power dissipation of the network. This improvement is
achieved by replacing the multi-hop paths between far apart cores with a wireless single-hop
link. Due to space, power and cost limitations, it is crucial to determine both the optimum
number of equipped wireless hubs and their proper positions. In this paper, we propose a novel
approach to obtain the optimum configuration of a WIiNOC by leveraging the Simulating
Annealing algorithm. Simultaneous multiple communications in such a network can be
achieved by using multiple access techniques such as Orthogonal Frequency Division Multiple
Access (OFDMA) to create dedicated channels between a source and destination pair. This
technique is more bandwidth efficient compared to previously used FDMA. Also, it can
distribute the available bandwidth between wireless nodes according to the traffic demands.
So, we introduce an adequate channel reallocation algorithm regards to the broadcasting
nature of the OFDMA scheme. The introduced architecture shows better performance in
comparison with the conventional WiNOCs. This improvement is especially observed for
latency characteristics where an improvement of about 15 is obtained.

Keywords: Microprocessor chips, Network on chip (NOC), OFDM modulation, Routing
protocols, Wireless networks.
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Design and Simulation of OR Logic Gate Using RF
MEMS Resonators
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Abstract

This paper presents a neuromechanical logic gate using Radio Frequency MEMS (RF MEMS)
oscillators which are implemented as neurons of Hopfield network constituting an OR logic
gate. Auto-correlative associative memory property being provided by phase-locked
synchronized network of oscillators makes this logic operation possible. The proposed gate
consists of 8 MEMS oscillators connected via electrical couplings and is capable of very high
speed computation in case of utilizing high frequency MEMS resonators. This work can lay the
groundwork for a new approach in analog computing systems based on mechanical
oscillations.

Keywords: Mechanical neurocomputing, Analog computing, MEMS, Logic gate, Associative
memory, Oscillatory neural network, Oscillator based computing.
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Abstract

guantum computing is the emerging technology in the new era and is very promising, not only
guantum computers substantially accelerate what classical computers are able to do nowadays
but they are also capable of providing answers that classical computers never could. Using
reversible logic in designing quantum circuits has many advantages such as lowering power
consumption, reducing heat dissemination, and decreasing quantum cost, ancilla inputs, and
garbage outputs that lead to even higher performance in quantum computers. Decoders have
many utilizations in digital circuits any function in form of SOP or POS can be implemented
using decoders, counters, and ROMs have also used decoder modules in their designs in this
article two novel designs for 2:4 and 3:8 decoder have been proposed that has been proved to
have less quantum cost, unused outputs, and ancilla inputs when it comes to comparison with
recent researches that have been done concerning this field.

Keywords: guantum computing, reversible logic,2:4 decoder circuit, constant input, garbage
output, quantum cost.
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Abstract

The hardware implementation of neural network has always been of interest to the
researchers as it can significantly increase the efficiency and application of neural networks
due to the distributed nature of Artificial Neural Networks (ANNs) in both memory and
computation. Direct implementation of ANNs also offer large gains when scaling the network
sizes. Stochastic neurons are among the most significant aspects of machine learning
algorithms and are very important in different neural networks. In this paper, a hardware
model for the stochastic neuron based on the magnetic tunnel junction (MTJ) in subcritical
current switching regime is proposed. Functional evaluation of the proposed model
demonstrates that the behavior of the proposed model is comparable to the mathematical
description of the stochastic neuron, and it has a negligible error in comparison with the
theoretical model. The simulation results of image binarization over 10,000 images indicate
that the proposed hardware model has only 0.25% pack signal to noise ratio (PSNR) and 0.02%
structural similarity (SSIM) variation compared to its software-based counterpart.

Keywords: Stochastic Neuron, Spintronic, Magnetic Tunnel Junction (MTJ), Image
Binarization.
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Abstract

The fast-increasing amount of massive and complex data in today’s Internet, called Big Data,
requires sophisticated, comprehensive and highly operational databases. NoSQL databases are
designed to fulfill Big Data requirements. Choosing an appropriate NoSQL database among
various solutions to cover and manage big volume of data in Big Data, both in quantity and
quality, itself is a big challenge. Cassandra is one of the distributed NoSQL databases mastered
for managing very large amounts of structured and unstructured data spread out across many
commodity servers, while providing highly available services with no single point of failure.
Cassandra system was designed to run on cheap commodity hardware and handle high write
through-put while not sacrificing read efficiency. This Paper will first present an overview of
NoSQL databases, Big Data and loT data as a controversial and complicated source of data in
Big Data. Then, focuses on Cassandra database read request issues in its read path and suggests
a model to reduce the time of read request (read query) coming from client side to Cassandra
database. In this model we added a cache called Coordinator cache in Cassandra controlling
nodes. Using a real dataset, we perform an analysis of Cassandra existing read path with
suggested read path model and then compare the time of a read query before and after this
model. The result shows that using Coordinator cache together with key cache offered by
Cassandra database speedup data read request. Coordinator cache requires no extra memory
because Cassandra Coordinator node does not store anything when doing controlling tasks
over replica nodes and its potential memory space can be used for the introduced Coordinator
cache.

Keywords: NoSQL, Big Data, loT, Cassandra, Read-Path, Cache.
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Abstract

Join operation has always been a topic of interest in scientific research that is commonly used
in most applications. Given that a massive amount of information is generated daily, one of the
problems and bottlenecks in Join operations is the execution time and the complexity of
parallelization. Between all the various join types, the left outer join is the most common
whereas little work has been done to optimize this operation. A common type of outer join is
Left outer join between small and large tables, and the optimal execution of this operation can
have a major impact on the overall performance of programs. In this paper, we present an
optimal algorithm that performs left outer join on small-large tables in parallel. We will also
discuss all the challenges of parallel join and explain how to implement the algorithm in detail.
We perform several experiments in the cloud computing environment using the Spark
framework. The results show that the proposed algorithm is scalable and has better
performance than existing algorithms.

Keywords: Outer Join, Big Data, Cloud Computing, Parallel Join, Small-large Join, Hash Join.
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Abstract

The Internet of things (loT) is generating a huge amount of data and big data management is
of key importance. One of the important applications of loT is smart meter networks and one
of the key issues in establishing smart meter networks is managing the large volume of data
sent by the meters. In this paper, we present a data management system implemented for
monitoring and managing the data collected from the smart meters and controlling them in a
large-scale network. 10T infrastructure with LPWAN (Low Power Wide Area Network) class is
considered in this system. Moreover, two methods are proposed to improve the performance
in terms of scalability and response time. It is shown that the implemented data management

system using the proposed methods achieve significant performance improvement in large
scale networks.

Keywords: internet of things, big data, data management system, smart meter network,
scalability, caching.



mailto:farzan.farahani@email.kntu.ac.ir
mailto:frezaei@kntu.ac.ir

PERMUTE: Response Time and Energy Aware
Virtual Machine Placement for Cloud Data
Centers

Benyamin Eslami
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, eslami.b@ut.ac.ir

Morteza Biabani
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, mbiabani@ut.ac.ir

Mohsen Shekarisaz
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, shekarisaz@ut.ac.ir

Nasser Yazdani
Professor at Electrical and Computer Engineering, University of Tehran, Tehran, Iran, yazdani@ut.ac.ir

Abstract

Cloud data centers play a significant role in providing services needed by users in a quick way.
Recent studies show that, traffic patterns in data centers have a special importance to be
improved, since they have significant effects on various aspects such as congestion, overall
energy consumption and service response time. The traffic patterns inside a cloud data center
have two categories: North-South and East-West. The former one is the outside-inside and
inside-outside traffic, Whereas, the latter is the traffic among Virtual Machines (VMs) within
data centers. Previous studies have shown that the East-West traffic pattern is multiple times
larger than the North-South one. This leads data centers to experience congestion and packet
loss in the core layer of their topology. Common cause of large traffic patterns is that, VMs of
service chains are scattered within the data center in different racks, so that, it causes lots of
packet injection into the data center. In this paper, we propose a heuristic algorithm to place
VMs of a service chain in a closer proximity of each other to improve the East-West traffic
pattern by reducing response time of services and also data centers’ overall energy
consumption. The simulation results compared to the state-of-the-art method demonstrate
about 18% improvement in response time for users’ requests and 10% of total energy
consumption reduction in the data center.

Keywords: Cloud Data Center, VM placement, Traffic Pattern, Service Response Time, Energy

consumption.
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Abstract

Nowadays, the use of auction-based resources has gained popularity among cloud computing
users due to the significant reduction in execution costs. Amazon EC2 as a cloud service
provider, claims that utilizing these instances leads to more than 90% cost reduction in some
cases. However, these instances are offered with shortcomings, such as unprecedented
eviction due to out-of-bid failures. Accordingly, offering a proper price bid by the users can
reduce the risk of out-of-bid failures. This paper proposes a pricing mechanism using the
Fibonacci sequence and Elliot waves techniques popular in stock exchange markets for
predicting the future Amazon EC2 spot instances. The proposed method presents a reasonable
price bid, which reduces the risk of out-of-bid failures. Moreover, the proposed method's
computational overhead is low, which makes it easy to rebid in the event of a source reclaim.
The experimental results denote that the proposed pricing method reduces the risk of out-of-
bid failures significantly.

Keywords: price prediction, cloud computing, spot instances, Fibonacci sequence.



mailto:adeldari@torbath.ac.ir
mailto:salehan@torbath.ac.ir
mailto:sabzekar@birjandut.ac.ir

Water Cycle Algorithm-Based Control for
Optimal Consensus Problem

Ramin Fotouhi
Department of Control Engineering, Shahid Beheshti University, Tehran, Iran
r.futuhi@mail.sbu.ac.ir

Mahdi Pourgholi
Department of Control Engineering, Shahid Beheshti University, Tehran, Iran
m_pourgholi@sbu.ac.ir

Abstract

This paper presents an approach for controlling the multi-agent system based on optimal
control approach. The cost function of this problem is global, and three algorithms (Jaya,
teaching-learning and water cycle algorithms) are applied to the system. Simulation outputs
show the usefulness of the water cycle algorithm so as to find the better performance in terms
of complexity of algorithm for the problem, and this technique leads to optimal consensus.
Simulations are done via MATLAB software.

Keywords: distributed systems, algorithms, soft computing.
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Abstract

The Internet of Things (IoT) enables a large number of intelligent objects to connect and
provide services to each other. Adding the social concept to the relationship between objects
and introducing the Social Internet of Things (SloT) have evolved interactions between objects.
Following that, the possibility of abusing social relations has been raised. Trust management
(TM) is a significant approach to choose the most reliable service provider (SP) among
candidate objects. Defining trust models appropriate to SloT applications can provide a suitable
platform for service interactions and prevent the reduction of quality of service (QoS) by
malicious or defective objects. In establishing trust between two objects with no interaction
experience in the past, trust can be indirectly calculated based on other objects'
recommendation. Given the possibility of making unsuitable recommendations, the
recommendation system (RS) can improve the trust calculation accuracy by selecting suitable
recommenders and filtering inappropriate recommendations. The TM can also support RS by
considering trust values in the recommender selection process and filtering recommendations.
In previous research, the simultaneous use and cooperation of TM and RS systems in the SloT
context have received less attention. In this paper, we studied TM and RS's reciprocal
improvement and evaluated its effect on improving the functionality of the TM in the
performed evaluation scenarios.

Keywords: Internet of Things, Social Internet of Things, trust management, recommendation
systems, recommendation filtering.
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Abstract

ATMs are no longer just machines, these connected devices are smart, intelligent things in the
Internet of Things (loT). Access to cash for many in society is remaining essential during the
current COVID-19 lock-down around the globe. A cash inventory management system is
necessary to decide whether ATM should be replenished on each day of the week. In this
paper, we study the real-time cash replenishment planning problem under outflow uncertainty
where the fee of the security companies grows if the replenishment ends up falling on a
weekends/holidays. Our model is based by the Double Deep Q-Network (DQN) algorithm which
combines popular Qlearning with a deep neural network. The proposed method is used to
control replenishment operation in order to minimize replenishment cost where the cash
demand changes dynamically at each day. Experiment results show that our proposed method
can work effectively on the real outflow time-series and it is able to reduce the ATM
operational cost compared with the other state-of-the-art cash demand prediction schemes.

Keywords: cash replenishment planning, deep learning, ATM, reinforcement learning,
double Q-network.
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Abstract

Money laundering nowadays occurs as one of the most severe and common crimes with great
potential to harm the economy. Discovering money laundering by different computer methods
has always been necessary due to criminals' high tendency to launder money. This study has
focused on catching a type of money laundering, which leaves a trace in the datasets where
the process of money laundering has been done collaboratively. This crime can be uncovered
merely by discovering the pattern of group behavior of individuals. In this research, the social
networks analysis method has been employed to detect group behavior in money laundering.
The data were simulated based on the real environment and by considering different states
because of proper data inaccessibility. The patterns of placement, layering, and integration of
money are initially explained in money laundering in this study, followed by drawing a social
network of individuals' transactions. In the end, the main culprits and their collaborators will
be introduced based on a combination of criteria of centrality and detecting communities.
Three different types of data have been used aimed at assessing the accuracy of the proposed
solution. The proposed solution has also been compared with essential solutions such as the
support vector machine, decision tree, and deep learning.

Keywords: Anti-money laundering, Social network analysis, Fraud detection, Criminal
networks.
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Abstract

One of the bold issues in autonomous driving is considered semantic image segmentation,
which must be done with high accuracy and speed. Semantic segmentation is used to
understand an image at the pixel level. In this regard, various architectures based on deep
neural networks have been proposed for semantic segmentation of autonomous driving image
datasets. In this paper, we proposed a novel combination method in which dividing the image
into its constituent regions with the help of classical segmentation brings about achieving
beneficial information that improves the DeeplLab v3+ network results. The proposed method
with the two backbones, Xception and MobileNetV2, obtains the mloU of 81.73% and 76.31%
on the Cityscapes dataset, respectively, which shows promising results compared to the model
without postprocessing.

Keywords: Image Segmentation, Semantic Segmentation, Autonomous Driving, Deep Neural

Network, Conditional Random Field.
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Abstract

Mapping the position of soccer robot agents to a real field, is one of the essential issues in the
practical implementation of scientific contributions in this context. The lack of a proper
assignment affects the scientific implementation of many subjects, such as routing, obstacle
avoidance, and robot guidance. For this reason, the use of a clustering method is proposed in
this article. Upon the entrance of a new agent, its position is mapped to the real field based on
the clustering algorithm. After this mapping, the system begins to work according to the
position of the agents, which is defined as the position of the centers of the clusters, as well as
the rules defined in the knowledge-base. Considering the unknown and dynamic environment
of the robot, some objects inherit common traits from multiple clusters. One reasonable
solution for considering the cluster overlaps is to assign a set of membership degrees to each
of them. Multiple membership degree assignments result from the fuzzy nature of the clusters.
Due to the reduction of segmentations and the shrinkage of the search space, fuzzy clustering
generally faces less computational overhead, while the identification and handling of vague,
noisy, and outlier data also become much easier in them. The approach of the proposed
method is based on the feasibility ideas and uses multi-core learning to identify clusters with
complex data structures. The feasibility score of each data represents the percentages of the
properties that data inherits from the clusters. Automatically adjusting the weights of the cores
in an optimization framework, the proposed method avoids the damage caused by problems
such as adopting inefficient cores, or irrelevant features.
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Abstract

Neural networks had impressive results in recent years. Although neural networks only
performed using Euclidean data in past decades, many data-sets in the real world have graph
structures. This gap led researchers to implement deep learning on graphs. The graph
convolutional network (GCN) is one of the graph neural networks. We propose the differential
evolutional optimization method as an optimizer for GCN instead of gradient-based methods
in this work. Hence the differential evolution algorithm applies for graph convolutional
network’s training and parameter optimization. The node classification task is a non-convex
problem. Therefore, DE algorithm is suitable for these kinds of complex problems.
Implementing evolutionally algorithms on GCN and parameter optimization are explained and
compared with traditional GCN. DE-GCN outperforms and improves the results by powerful
local and global searches. It also decreases the training time.

Keywords: Graph convolutional network, Graph node classification, Neuroevolutionary,
Differential evolution algorithm, Anomaly Detection.
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Abstract

A recommender system primary purpose is to provide a series of item suggestions on a topic
to its user. Deep learning is used in many fields and solved difficult and complex problems with
large volumes of data. Deep learning can also be used in referral systems. Today, online
shopping systems are looking for a method that can recommend items according to the user
preference and interest in order to increase their sales. Clothing sales systems offer a set of
recommendation based on the needs and interests of the users. Today, due to the current
situation caused by the Coronavirus, the majority of tasks are done online. In this paper, we
propose a content-based clothing recommender system using deep neural network. In content
based systems, product features are required for prediction of unobserved items ratings. In
our proposed system by using a deep neural network, the cloth category is obtained and the
need to manually extract the product features is eliminated by producing the required features
with a large and useful volume. The advantage of this system is that it uses the same network
to specify gender as a feature in making suggestions then shows the results to the user.
Different machine learning algorithms are tested and analyzed with and without considering
demographic information such as gender. The experimental results show that the loss of our
proposed system is lower than the other related systems and solves the cold start problem for
new items. Our proposed system also recommends novel, relevant and unexpected items.

Keywords: Clothing, Recommender System, Deep learning, Demographic, Feature
Extraction, Cold start, Content, Coronavirus.
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Abstract

Floods are a complex phenomenon that is difficult to predict because of their non-linear and
dynamic nature. Gauging stations that transmit measured data to the server are often placed
in very harsh and far environments that make the risk of missing data so high. The purpose of
this study is to develop a real-time reliable flood monitoring and detection system using deep
learning. This paper proposed an Internet of Things (loT) approach for utilizing LoRaWAN as a
reliable, low power, wide area communication technology by considering the effect of radius
and transmission rate on packet loss. Besides, we evaluate an artificial neural network (ANN),
Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) neural network models for
flood forecasting. The data from 2013 to 2019 were collected from four gauging stations at
Brandywine-Christina watershed, Pennsylvania. Our results show that the deep learning
models are more accurate than the physical and statistical models. These results can help to
provide and implement flood detection systems that would be able to predict floods at rescue
time and reduce financial, human, and infrastructural damage.

Keywords: flood forecasting, deep neural network, Artificial Neural Network (ANN),
Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM); Gated Recurrent Unit
(GRU), LoRaWAN, reliability.
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Abstract

3D action recognition is a long-standing problem in the field of computer vision. Given the 3D
coordinate set of body joints, it is desired to recognize what activity is performed. The problem
can be approached using a time-series model. Recent advancements in the field of recurrent
neural networks have enabled the use of sophisticated memory cells that can predict time
series using the information from earlier elements of a sequence. In this article, we proposed
a hierarchical architecture that attends to its own signature through time, which can put more
weight on time frames of the sequence that are more specific to the performed action.
Accordingly, using memory cells, a self-attention mechanism is implemented. In addition,
spatial attention is also considered by sub-grouping and then regrouping body parts down the
architecture hierarchy. We evaluate the proposed model on NTU and MSR 3D action datasets.
An accuracy of 79.8% and 97.8% on NTU and MSR datasets indicated that the proposed
method outperforms the previous methods tested in this paper.

Keywords: action recognition, attention, skeletal data, deep neural network.
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Abstract

Unlike a single-label supervisor dataset where each instance is assigned to one class label, in
multilabel datasets, several class labels are assigned to each instance, which makes it difficult
to build an accurate and comprehensive model from this dataset. In this study, a memetic
algorithm for feature selection in a multi-label dataset is proposed. The principal innovation of
this study is the offer of a novel local search algorithm which, in collaboration with binary
quantum-inspired gravitational search algorithm (BQIGSA), forms the main framework of the
proposed memetic algorithm. The main invention of the proposed local search algorithm is to
build a number of neighbors for a solution using the prior knowledge vector and the posterior
knowledge vector to select effective features and remove useless and irrelevant features. The
results of implementing the proposed algorithm and comparing these results with similar
works show that the proposed method in most cases leads to better results.

Keywords: Multi-label feature selection, Memetic algorithm, Local search algorithm, Prior
knowledge vector, Posterior knowledge vector, Gravitational search algorithm.
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Abstract

Off-Policy Deep Reinforcement Learning (DRL) algorithms such as Deep Deterministic Policy
Gradient (DDPG) has been used to teach intelligent agents to solve complicated problems in
continuous space-action environments. Several methods have been successfully applied to
increase the training performance and achieve better speed and stability for these algorithms.
Such as experience replay to selecting a batch of transactions of the replay memory buffer.
However, working with environments with sparse reward function is a challenge for these
algorithms and causes them to reduce these algorithms’ performance. This research intends
to make the transaction selection process more efficient by increasing the likelihood of
selecting important transactions from the replay memory buffer. Our proposed method works
better with a sparse reward function or, in particular, with environments that have termination
conditions. We are using a secondary replay memory buffer that stores more critical
transactions. In the training process, transactions are select in both the first replay buffer and
the secondary replay buffer. We also use a parallel environment to asynchronously execute
and fill the primary replay buffer and the secondary replay buffer. This method will help us to
get better performance and stability. Finally, we evaluate our proposed approach to the
Crawler model, one of the Unity ML-Agent tasks with sparse reward function, against DDPG
and AE-DDPG.

Keywords: deep reinforcement learning, experience replay buffer, deep deterministic

policy gradient, asynchronous episodic deep deterministic policy gradient.
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Abstract

Outlier detection in high dimensional data faces the challenge of curse of dimensionality where
irrelevant features may prevent detection of outliers. The Principal Component Analysis (PCA)
is widely used for dimensionality reduction in high dimensional outlier detection problem.
While no single subspace can to thoroughly capture the outlier, data points; we propose to
combine the result of multiple subspaces to deal with this situation. In this research, we
propose a subspace outlier detection algorithm in high dimensional data using an ensemble of
PCA-based subspaces (SODEP) method. Three relevant subspaces are selected using PCA
features to discover different types of outliers and subsequently, compute outlier scores in the
projected subspaces. The experimental results show that our ensemble-based outlier selection
is a promising method in high dimensional data and has better efficiency than other compared
methods.

Keywords: high dimensional data, outlier detection, outlier ensembles, Principal
Component Analysis.
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Abstract

As a generalization of convolutional neural networks to graph-structured data, graph
convolutional networks learn feature embeddings based on the information of each node’s
local neighborhood. However, due to the inherent irregularity of such data, extracting
hierarchical representations of a graph becomes a challenging task. Several pooling
approaches have been introduced to address this issue. In this paper, we propose a novel
topology-aware graph signal sampling method to specify the nodes that represent the
communities of a graph. Our method selects the sampling set based on the local variation of
the signal of each node while considering vertex-domain distances of the nodes in the sampling
set. In addition to the interpretability of the sampled nodes provided by our method, the
experimental results both on stochastic block models and real-world dataset benchmarks show
that our method achieves competitive results compared to the state-of-the-art in the graph
classification task.

Keywords: graph neural networks, pooling layer, graph signal sampling, graph classification.
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Abstract

Zero-Shot Learning (ZSL) is an emerging learning paradigm that addresses the problem of
recognizing unseen classes during training. Several studies have shown ZSL can be improved
using synthetic samples of unseen classes, usually generated with a GAN and conditioned on
some high-level descriptions of the desired class. This paper proposes a new generative
adversarial network architecture to improve synthetic feature generation by applying a ranking
step at training time. We combined two classifiers' results at the zeroshot classification step to
ensure improved classification accuracy. Then we evaluated the proposed architecture using
the widely used dataset AWA. Our results show an improvement of classification accuracy of
2.3% in ZSL setting and 0.15% in GZSL setting compared to the state-of-the-art.

Keywords: Zero-shot learning, GAN, synthetic feature generation, image classification.



mailto:s.ramazi@mail.sbu.ac.ir
mailto:a_nadian@sbu.ac.ir

Identity Recognition based on Convolutional Neural
Networks Using Gait Data

F. Faraji
Faculty of Electrical Engineering,K. N. Toosi University of Technology, Tehran, Iran,
FarnooshFaraji@email.kntu.ac.ir

F. Lotfi
Faculty of Electrical Engineering,K. N. Toosi University of Technology, Tehran, Iran, F.Lotfi@email.kntu.ac.ir

M. Majdolhosseini
Faculty of Mechanical Engineering, Amir Kabir University of Technology, Tehran, Iran, Maryam.Majd@aut.ac.ir

M. Jafarian
Faculty of Mechanical Engineering, Sharif University of Technology, Tehran, Iran, M-Jafarian@aut.ac.ir

H. D. Taghirad
Faculty of Electrical Engineering,K. N. Toosi University of Technology Tehran, Iran, Taghirad@kntu.ac.ir

Abstract

As a critical part of any security system, identity recognition has become paramount among
researchers. In this regard, several methods are presented while considering various sensors
and data. In particular, gait data yields rich information about a person, including some
exclusive moving patterns which can be utilized to distinguish between different individuals.
On the other hand, convolutional neural networks are proved to be applicable for structured
data, especially images. In this article, 12 markers are considered in gathering the gait data,
each representing a lower-body joint location. Then, utilizing the gait data in a 2D tensor form,
three different convolutional neural networks are trained to recognize the identities. Taking
light architectures into account, this approach is implementable in real-time application. The
obtained result shows the promising capability of the proposed method being used in identity
recognition.

Keywords: Identity recognition, gait data, convolutional neural networks, real-time
performance.
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Abstract

in recent years, there has been an explosion in the amount of information produced from
various sources with different topics. To understand this massive amount of information and
knowledge we need to condense the important information in the form of a summary. Hence,
there is an intense and growing interest among the research community for developing new
approaches to automatically summarize the text which can effectively remain the main idea of
the topic to be useful. An optimized text summarization system generates a summary, a short
length text which includes important information of the document. Many researchers have
been trying to improve techniques for generating summaries by a machine which are similar
to the human-made summary. As an unsupervised learning method, the TextRank algorithm
(An extension of the PageRank algorithm which is the base algorithm of Google search engine
for searching pages and ranking them) performs well on large scale text mining, especially for
text summarization or keyword extraction. It automatically extracts important sentences from
the original, but it neglects the semantic similarity between sentences and words which has a
significant effect on the results. For overcoming this important problem in this work, we
proposed a new method to add semantic to this algorithm by training a doc2vec model and
acquiring vector for each training set sentences. Furthermore, by calculating the cosine
similarity between sentences in a document we can weigh the relationship between sentences
and provide edges weights in a graph which nodes are sentences in the input text we are
summarizing, then apply TextRank algorithm to return the most important sentences by
assuming that more important sentences have higher score in the relationships with others
and contain more useful information on the input document.

Keywords: Text summarization, text clustering, word2vec model, TextRank algorithm.
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Abstract

Extracting aspect term is essential for aspect level sentiment analysis; Sentiment analysis
collects and extracts the opinions expressed in social media and websites' comments and then
analyzes them, helping users and stakeholders understand public views on the issues raised
better and more quickly. Aspect-level sentiment analysis provides more detailed information,
which is very beneficial for use in many various domains. In this paper, the significant
contribution is to provide a data preprocessing method and a deep convolutional neural
network (CNN) to label each word in opinionated sentences as an aspect or non-aspect word.
The proposed method extracts the terms of the aspect that can be used in analyzing the
sentiment of the expressed aspect terms in the comments and opinions. The experimental
results of the proposed method performed on the SemEval-2014 dataset show that it performs
better than other prominent methods such as deep CNN. The proposed data preprocessing
method with the deep CNN network can improve extraction of aspect terms according to F-
measure by at least 1.05% and 0.95% on restaurant and laptop domains.

Keywords: aspect extraction, opinion analysis, deep CNN, natural language processing,
deep learning, neural network.
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Abstract

In the modern world, social media are extensively used for the purpose of communication,
business and education. Although ease of use and simple accessibility to social media has
expanded their applications, but unfortunately, they are associated with potential dangers
which may negatively influence users. As main item, the publication of fake news can
negatively affect various aspects of life (political, social, economic, etc.), therefore researchers
have studied various methods to address the fake news detection. One way to check and
detect fake news is to use the available features in news propagation path, news publisher and
users. In this paper, an attempt has been made to investigate fake news detection based on
these features and a proposed deep neural network model.

Keywords: Fake News, Propagation path, CNN, GRU, Detection.



mailto:F.Torgheh@qiau.ac.ir
mailto:Masoumi@qiau.ac.ir
mailto:keyvanpour@alzahra.ac.ir
mailto:shojadini@irost.ir

Heightmap Reconstruction of Macula on Color Fundus
Images Using Conditional Generative Adversarial
Networks

Peyman Tahghighi
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran, Peyman.Tahghighi@ut.ac.ir

Reza A.Zoroofi
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

Sare Safi
Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti
University of Medical Sciences, Tehran, Iran

Alireza Ramezani
Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid
Beheshti University of Medical Sciences, Tehran, Iran

Hamid Ahmadieh
Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti
University of Medical Sciences, Tehran, Iran

Abstract

For screening of eye retina, the information about elevations in different parts can assist
ophthalmologists to diagnose diseases better. However, fundus images which are one of the
most common screening modalities for retina diagnosis lack this information due to their 2D
nature. Hence, in this work, we try to automatically reconstruct this height information from a
single-color fundus image. Recent approaches have used shading information for
reconstructing the heights but their output is not accurate since the utilized information is not
sufficient. Additionally, other methods were dependent on the availability of more than one
image of the eye which is not available in practice. In this paper, motivated by the success of
Conditional Generative Adversarial Networks(cGANs) and deeply supervised networks, we
propose a novel architecture for the generator which enhances the details in a sequence of
steps. Comparisons on our dataset illustrate that the proposed method outperforms all of the
state-of-the-art methods in image translation and medical image translation on this particular
task. Additionally, clinical studies also indicate that the proposed method can provide
additional information for ophthalmologists for diagnosis.

Keywords: Heightmap estimation, Conditional generative adversarial networks,
Convolutional neural networks, Fundus image, Deep learning.
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Abstract

Obstacle avoidance is an important and crucial issue for mobile soccer robots given the robot’s
dynamic environment. A robot faces obstacles in the playground, that are sometimes mobile,
such as the opponent robots, teammate robots, and other obstacles such as the goals and
flags, therefore its environment is in a completely dynamic state. The main idea of this article
is to use case-based reasoning which uses past experiences to solve a new problem that is in
some ways similar to a problem it has already encountered. The case-based reasoning
database includes a series of ordered information on several previous cases that can be
adapted to the new problem to the extent that the solution of the old problem can be adapted
and modified to the new one. Traditional expert systems require problem-solving knowledge
and Domain knowledge, while case-based reasoning does not need problem knowledge and
focuses on finding similarities between the new problem and the previously solved ones. With
this approach, learning is done through modifying existing laws and spending fewer resources.

Keywords: Case-Based Reasoning, Navigation & Obstacle Avoidance, Mobile Soccer Robot.
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Abstract

With the new coronavirus crisis, medical devices” workload has increased dramatically, leaving
them growingly vulnerable to security threats and in need of a comprehensive solution. In this
work, we take advantage of the flexible and highly manageable nature of Software Defined
Networks (SDN) to design a thoroughgoing security framework that covers a health
organization’s various security requirements. Our solution comes to be an advanced SDN
firewall that solves the issues facing traditional firewalls. It enables the partitioning of the
organization’s network and the enforcement of different filtering and monitoring behaviors on
each partition depending on security conditions. We pursued the network’s efficient and
dynamic security management with the least human intervention in designing our model which
makes it generally qualified to use in networks with different security requirements.

Keywords: SDN, security, firewalls, monitoring, Health Information Network, connected
medical devices.
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Abstract

Algebraic connectivity is a global criterion for assessing network resistance to failures.
Algebraic connectivity is a monotone measure against the number of links added to a given
network to enhance its robustness. In this paper, we show the effect of link addition on the
size of cascading failures. Accordingly, we consider two different strategies for step-bystep link
addition: adding links to the network’s core and adding links to the whole network. We choose
new links using simulated annealing to maximize the algebraic connectivity. Simulation results
suggest that although the core of the network has a significant impact on network robustness,
adding links to the core did not significantly affect cascading failures. Conversely, we find that
adding links to the whole network make the network robust against cascading failures.

Keywords: Cascading failures, power grid, Algebraic connectivity.
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Abstract

User mobility is a challenging problem in heterogeneous cellular networks. In this paper, we
try to turn the mobility challenge into an opportunity to reduce latency. We first define a model
of an urban cellular network in which mobile users can move between different small cells.
Then, by introducing a scheme called Cooperative LRU, we use user mobility to reduce the file
download delays. In this method, the requested file which is cached in the current user’s cell
is also cached in two adjacent cells. This means that the caching scheme in the current cell is
reactive and in two other adjacent cells is proactive. Finally, we have a comparison between
traditional methods and the introduced method and we examine the effect of different
network and kinetic parameters on reducing latency.

Keywords: caching, mobility, cellular networks, heterogeneous networks, urban networks.
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Abstract

In recent years, the blockchain that is the basis of Bitcoin has received much attention.
However, the blockchain also faces many challenges, such as security and scalability, which
have been the subject of recent researches. Much work has been done to solve the scalability
problem in blockchain; one of these methods is sharding. This method is based on dividing the
network into different groups and validating transactions in parallel. These methods use
traditional consensus algorithms. One of the problems in this regard is the incentive that
should be provided for nodes to participate in these consensus algorithms. In this paper,
Repchain, one of the existing methods in this field is examined, and the problems that this
method has is analyzed. Next, it is proved that the proposed method causes the network nodes
not to follow the protocol and also causes collusion between network nodes.

Keywords: blockchain, bitcoin, consensus algorithm, sharding, incentive.
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Abstract

Nowadays, the usage of mobile devices is increasing in human’s life. But these devices have
some constraints such as limited storage, low battery lifetime, and weak computation capacity.
To deal with these limitations, mobile devices offload their heavy applications to the cloud by
using mobile cloud computing technology. Because of the network conditions, offloading may
impose delay and energy costs on mobile devices. Thus, it is a tradeoff between local and
remote execution. Further, offloading some components of the application may be cost-
effective than the whole one. In this paper, we propose a fine-grain computation offloading
scheme considering application components’ sequencing. The proposed scheme turns the
exponential complexity of the decision algorithm into the polynomial. The simulation and
evaluation results demonstrate that the offloading efficiency improves thanks to reducing the

decision overhead.

Keywords: Mobile cloud computing, Offloading, Fine-grain, Application Components’
Sequencing.



mailto:r_roostaei@comp.iust.ac.ir
mailto:marzieh_sheikhi@comp.iust.ac.ir

Effective synthetic data generation for fake user
detection

Arefeh Esmaili
Department of software engineering, Faculty of Computer Engineering, K.N.Toosi University of
Technology, Tehran, Iran
arefehesmaili@email.kntu.ac.ir

Saeed Farzi
Department of software engineering, Faculty of Computer Engineering, K.N.Toosi University of
Technology, Tehran, Iran
saeedfarzi@kntu.ac.ir

Abstract

Nowadays, with the pervasiveness of social networks among the people, the possibility of
publishing incorrect information has increased more than before. Therefore, detecting fake
news and users who publish this incorrect information is of great importance. This paper has
proposed a system based on combining context-user and context-network features with the
help of a conditional generative adversarial network for balancing the data set to detect users
who publish incorrect information in the Persian language on Twitter. Moreover, by conducting
numerous experiments, the proposed system in terms of evaluation metrics compared to its
competitors, has produced good performance results in detecting fake users.

Keywords: Fake user detection, Generative adversarial network, Graph, Social Networks.
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Abstract

One of the main challenges of the machine reading comprehension (MRC) models is their
fragile out-of-domain generalization, which makes these models not properly applicable to
real-world general-purpose question answering problems. In this paper, we leverage a zero-
shot weighted ensemble method for improving the robustness of out-of-domain generalization
in MRC models. In the proposed method, a weight estimation module is used to estimate out-
of-domain weights, and an ensemble module aggregate several base models’ predictions
based on their weights. The experiments indicate that the proposed method not only improves
the final accuracy, but also is robust against domain changes.

Keywords: ensemble learning, machine reading comprehension, domain adaptation.
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Abstract

Powerful yet simple augmentation techniques have significantly helped modern deep learning-
based text classifiers to become more robust in recent years. Although these augmentation
methods have proven to be effective, they often utilize random or non-contextualized
operations to generate new data. In this work, we modify a specific augmentation method
called Easy Data Augmentation or EDA with more sophisticated text editing operations
powered by masked language models such as BERT and RoBERTa to analyze the benefits or
setbacks of creating more linguistically meaningful and hopefully higher quality
augmentations. Our analysis demonstrates that using a masked language model for word
insertion almost always achieves better results than the initial method but it comes at a cost
of more time and resources which can be comparatively remedied by deploying a lighter and
smaller language model like DistilBERT.

Keywords: data augmentation, text generation, masked language models, EDA, natural
language processing, machine learning, text classification.
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Abstract

Natural Language Processing (NLP) is one of the promising fields of artificial intelligence. In
recent decades, high volume of text data has been generated through the Internet. This kind
of data is a valuable source of information which can be used in various fields such as
information retrieval, search engines, recommender systems, etc. One practical task of text
mining is document classification. In this paper, we mainly focus on Persian document
classification. We introduce a new feature extraction approach derived from the combination
of K-means clustering and Word2Vec to acquire semantically relevant and discriminant word
representations. We call our proposed approach CC-Word2Vec (Categorical Clustering-
Word2Vec) since we retrain the Word2Vec model using the word clusters of each category
obtained by K-Means algorithm. We use 200 documents of 5 most frequent categories of
Hamshahri news dataset to evaluate our method. We pass the extracted word vectors to Multi-
Layer Perceptron (MLP) and Gradient Boosting (GB) classifiers to compare the performance of
the proposed approach with Term Frequency Inverse Document Frequency (TF-IDF) and
Word2Vec methods. Our new approach resulted in an improvement in the obtained accuracy
of Gradient Boosting and Multi-Layer Perceptron models in comparison with TF-IDF and
Word2Vec techniques.

Keywords: Persian document classification, TF-IDF, Word2Vec, CC-Word2Vec, MLP, GB, K-
Means.
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Abstract

Over the past decade, social networks and messengers have found a special place in the
creation and development of businesses. User recommendation is a very important feature in
social networks that has attracted the attention of many users to these environments. Using
this system in an instant messenger environment is very useful. Telegram is a cloud-based
messenger with more than 400 million monthly active users. Telegram is used as a social
network in Iran, but does not offer the most widely used features of social networks, such as
recommending users. This feature is important for marketers to find target audience. This
paper presents a hybrid filtering-based algorithm to recommend Telegram users. This method
combines the membership graph of users with the profile of groups. The membership graph,
models users based on their membership in groups. Also, the profile of each group includes
the name and description of the group. We have created a bag of words for each group based
on natural language processing methods to combine it with the membership graph. After
combination process, users are recommended based on the list of groups obtained. The data
used in this study is the information of more than 120 million users and 900,000 supergroups
in Telegram. This data is obtained through Telegram API by Idekav system. The evaluation of
the proposed method has been done separately on two categories of specialized supergroups.
Each category includes 25 specialized supergroups in Telegram. Selected supergroups for
evaluation have between 2,000 and 10,000 members. Experimental results show the integrity
of the model and error reduction in RMSE.

Keywords: Telegram, User recommendation, Hybrid filtering, Membership graph,
Recommender systems.
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Abstract

Social media has become a playground for users to share their ideas freely. Analyzing these
data has become of special interest to authorities and consulting firms. They seek to choose
right policies based on the insight acquired. Hence, sentiment analysis of data spread in social
media has gained significant importance. There are two major approaches for sentiment
analysis including lexicon-based and supervised methods. Among supervised methods, deep
models have proven to be a better fit for the sentiment analysis task. Since, they are domain
free and able to handle large volumes of data effectively. In particular, BERT's state of the art
performance on various natural language processing tasks has encouraged us to use this
network architecture for sentiment analysis. In this research, over 12000 Persian tweets
including the stock market keyword have been crawled from twitter. They are labeled manually
in three different categories of positive, neutral and negative. Then a pre-trained ParsBERT
model has been fine-tuned on these data. Our model is evaluated on the test dataset and
compared to its counterpart, lexicon-based method using Polyglot as its lexicon. Accuracy of
82 percent has been achieved by our proposed model surpassing its lexicon-based contender.

Keywords: sentiment analysis, deep learning, ParsBERT, twitter, stock market.
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Abstract

Text summarization is one of the most critical Natural Language Processing (NLP) tasks. More
and more researches are conducted in this field every day. Pre-trained transformer-based
encoderdecoder models have begun to gain popularity for these tasks. This paper proposes
two methods to address this task and introduces a novel dataset named pnsummary for
Persian abstractive text summarization. The models employed in this paper are mT5 and an
encoder-decoder version of the ParsBERT model (i.e., a monolingual BERT model for Persian).
These models are fine-tuned on the pn-summary dataset. The current work is the first of its
kind and, by achieving promising results, can serve as a baseline for any future work.

Keywords: Text Summarization, Abstractive Summarization, BERT, BERT2BERT, mT5,
ParsBERT.
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Abstract

Ransomware is a type of malware from cryptovirology that perpetually blocks access to a
victim's data unless a ransom is paid. Today, this type of malware has grown dramatically and
has targeted the computer systems of some important organizations such as hospitals, banks,
and Water Organization. Therefore, early detection of this type of malware is very important.
This paper describes a solution to ransomware detection based on executable file headers.
Header of the executable file expresses important information about the structure of the
program. In other words, the header's information is a sequence of bytes, and changing it
changes the structure of the program file. In the proposed method, using LSTM network, the
sequence of bytes that constructs the header is processed and the ransomware samples are
separated from the benign samples. The proposed method can detect a ransomware sample
with 93.25 accuracy without running the program and using a raw header, so it is suitable for
quick detection of suspicious samples.

Keywords: byte, LISTM network, ransomware, ransomware detection, sequence.
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Abstract

One of the basic operations over distributed data is to find the -th greatest value among union
of these numerical data. The challenge arises when the datasets are private and their owners
cannot trust any third party. In this paper, we propose a new secure protocol to find the -th
greatest value by means of secure summation sub-protocol. We compare our proposed
protocol with other similar protocols. Specially, we will show that our scheme is more efficient
than the well-known protocol of Aggarwal et.al. (2004) in terms of computation and
communication complexity. Specifically, in the case of Ti =1 secret value for any party our
protocol has 1°8™ computation overhead and #1°8m communication overhead for party,
where and are the maximum acceptable value and communication overhead of the secure
summation sub-protocol, respectively. The overheads of our protocol are exactly half of the
overheads of Aggarwal’s protocol.

Keywords: security protocols, secure computation, secure sum protocol, semi-honest
model, efficiency.
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Abstract

In this paper, a novel fragile watermarking scheme is proposed for both tamper detection and
tampered image recovery based on Hamming code. To serve this purpose, the authentication
code (check bits) is computed using Hamming code from data bits. In this work, data bits were
selected from the five Most Significant Bits (5_MSB) of the pixel values and authentication code
is embedded into the three Least Significant Bits (3LSBs) to preserve image quality. Hamming
(7,4) has been extended, in this paper, to (8,5) and is used for embedding, error detection and
correction. Each instance of coding is applied on eight pixels (one bit per pixel) located in
sufficient far parts of the image. Hence, for tampers smaller than a threshold, the recovery can
be done perfectly. According to the experimental results, the proposed method achieves
better performance in terms of recovering the tampered areas, compared to state-of-the-art.

Keywords: Authentication code, Fragile watermarking, Hamming code, Tamper detection
and recovery.
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Abstract

Bitcoin, as the first and the most adopted cryptocurrency, offers many features one of which
is contingent payment, that is, the owner of money can programmatically describe the
condition upon which his/her money is spent. The condition is determined using a set of
instructions written in the Bitcoin scripting language. Unfortunately, this scripting language is
not sophisticated enough to create complex conditions or smart contracts in general. Many
admirable efforts have been made to build a smart contract infrastructure on top of the Bitcoin
platform. In this paper, given the inherent limitations of the Bitcoin scripting language, we
critically analyze the practical effectiveness of these methods. Afterwards, we formally define
what a smart contract is and introduce seven requirements that if are satisfied, can make
creation of smart contracts for Bitcoin possible. Based on the introduced requirements, we
examine the ability of the current methods that use secure Multi-party Computation (MPC) to
create smart contracts for Bitcoin and show where they fall short. We additionally compare
their pros and cons and give clues on how a comprehensive smart contract platform can be
possibly built for Bitcoin.

Keywords: Smart Contract, Bitcoin, Blockchain, Secure Multiparty Computation, Scripting
Language.
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Abstract

A polarimetric synthetic aperture radar (PolSAR) image classification is introduced in this work.
The proposed method called as ridge regression-based polarimetricspatial (RRPS) feature
extraction generates polarimetric-spatial features with minimum overlapping and redundant
information. To this end, each polarimetric-spatial channel of PolSAR data is represented
through a ridge regression model using the farthest neighbors of that channel. The weights of
the regression model compose the projection matrix for dimensionality reduction. The
proposed RRPS method with a closed form solution has high performance in PolSAR image
classification using small training sets.

Keywords: ridge regression, Polarimetric SAR, feature space projection, classification.
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Abstract

Human detection in images is a crucial task due to its usage in different areas including person
detection and identification, abnormal surveillance and crowd counting. Low-resolution of
image sequences taken by stationary outdoor surveillance cameras is very challenging.
Detecting human with deep learning techniques, is more powerful than traditional methods
due to its ability to learn high-level deeper features, high detection accuracy and speed.
Therefore, this paper proposes a method for human detection in low-resolution images based
on YOLOv3. This method will prepare a dataset of low-resolution images collected by outdoor
surveillance cameras and annotate them manually. Next, we retrain YOLOv3 to make an
improved model for low-resolution images. The model achieves F1-score of 0.804 human
detecting for low-resolution test images.

Keywords: human detection, data preparation, deep learning, YOLOv3, low-resolution.



mailto:Sh_Pouyan@znu.ac.ir
mailto:Mostafa.Charmi@znu.ac.ir
mailto:Azarpeyvand@znu.ac.ir
mailto:H.Hassanpoor@aut.ac.ir

o Ny

N
'

Transfer Learning for End-to-End ASR to Deal
with Low-Resource Problem in Persian Language

Maryam Asadolahzade Kermanshahi
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
m asadolahzade@comp.iust.ac.ir

Ahmad Akbari
School of Computer Engineering, Iran University of Science and Technology,Tehran, Iran
akbari@iust.ac.ir

Babak Nasersharif
Computer Engineering Department, K. N. Toosi University of Technology,Tehran, Iran
bnasersharif@kntu.ac.ir

Abstract

End-to-end models are state of the art for Automatic Speech Recognition (ASR) systems.
Despite all their advantages, they suffer a significant problem: huge amounts of training data
are required to achieve excellent performance. This problem is a serious challenge for low-
resource languages such as Persian. Therefore, we need some methods and techniques to
overcome this issue. One simple, yet effective method towards addressing this issue is transfer
learning. We aim to explore the effect of transfer learning on a speech recognition system for
the Persian language. To this end, we first train the network on 960 hours of English LibriSpeech
corpus. Then, we transfer the trained network and fine-tune it on only about 3.5 hours of
training data from the Persian FarsDat corpus. Transfer learning exhibits better performance
while needing shorter training time than the model trained from scratch. Experimental results
on FarsDat corpus indicate that transfer learning with a few hours of Persian training data can
achieve 31.48% relative Phoneme Error Rate (PER) reduction compared to the model trained

from scratch.

Keywords: automatic speech recognition (ASR), end-to-end ASR, phoneme (phone)
recognition, transfer learning, lowresource language, Persian (Farsi) language.
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Abstract

The most recent video coding standard, named Versatile Video Coding (VVC), greatly improved
the compression rate compared to its predecessor, High Efficiency Video Coding (HEVC) using
some new coding tools. Though these new options provide appreciable coding gain, its
computational complexity is relatively high since the performance of these coding tools need
to be evaluated for each Coding Tree Units (CTU) through the Rate-Distortion Optimization
(RDO) process. To address this issue, in this paper, first, the effectiveness of the coding tools
in various parts of the frame, such as the borderline and central CTU, is investigated. The results
of this study show that the coding efficiency of some of these coding tools is much higher for
the borderline CTUs due to their specific features. Hence, these coding tools would be only
considered enable for the borderline CTUs in rate-distortion process to decrease the
computational complexity, without affecting the coding gain considerably. Simulation results
show that using this method, the compression efficiency decreased only by 0.64% in average,
but the computational complexity is reduced considerably, by 28.31%, in average.

Keywords: Versatile Video Coding, rate-distortion complexity optimization, encoder coding
tools.
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Abstract

In this research, a study of automatic personality perception based on the Big-five Inventory
(BFl) is done. To extract and select appropriate features for the classification, we employ an
auto-encoder as a nonlinear feature learning technique. Since an auto-encoder does not
extract proper classification lonely, a saddle point is found by a stop criterion based on
maximum separate ability in binary classes. The results reveal that nonlinear features enhance
the classification results in most personality traits. Furthermore, we use an adaptive neuro-
fuzzy inference system classification to model the uncertainty rooted in mental states and
affect the classification results through the extracted features. The classification outcomes on
SSPNet Speaker Personality dataset demonstrate significant improvement in the results of four
traits. These outgrowths verify the existence of uncertainty in the speech signal.

Keywords: Automatic Personality Perception, Big-five Inventory, Speech Signals, Auto
encoder, Fuzzy Systems, Feature Fusion.
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Abstract

The channel estimation of the muti-user massive MIMO systems is a crucial task which enables
us to leverage their high degrees of freedom. Due to the large number of base station antennas
and consequently the huge number of channel paths, the massive MIMO channel estimation
becomes more challenging. In this paper, we suggest a sparsity-based algorithm to estimate
the channels more efficiently. To this end, we would offer a problem modelling to exploit the
spatial correlation among different antennas of the BS as well as the inter-user similarity of the
channel supports. An iterative thresholding technique has been suggested to approximate the
channel matrix. The simulation results confirm that the proposed method has outstanding
performance compared to its counterparts.

Keywords: Massive MIMO, Channel estimation, Compresses sensing.



mailto:n_sadeghi99@sut.ac.ir
mailto:mazghani@sut.ac.ir

5 a0 oKy o

e

T TR b

Improving ranking function and diversification in
interactive recommendation systems based on
deep reinforcement learning

Vahid Baghi
Dept. of Algorithms and Computation, University of Tehran, Tehran, Iran, vahid.baghi@ut.ac.ir

Seyed Mohammad Seyed Motehayeri
Dept. of Algorithms and Computation, University of Tehran, Tehran, Iran, motehayeri@ut.ac.ir

Ali Moeini
Dept. of Algorithms and Computation, University of Tehran, Tehran, Iran, moeini@ut.ac.ir

Rooholah Abedian
Dept. of Algorithms and Computation, University of Tehran, Tehran, Iran, rabedian@ut.ac.ir

Abstract

Recently, interactive recommendation systems based on reinforcement learning have been
attended by researchers due to the consider recommendation procedure as a dynamic process
and update the recommendation model based on immediate user feedback, which is
neglected in traditional methods. The existing works have two significant drawbacks. Firstly,
inefficient ranking function to produce the Top-N recommendation list. Secondly, focusing on
recommendation accuracy and inattention to other evaluation metrics such as diversity. This
paper proposes a deep reinforcement learning based recommendation system by utilizing
Actor-Critic architecture to model dynamic users’ interaction with the recommender agent and
maximize the expected longterm reward. Furthermore, we propose utilizing Spotify’s ANNoy
algorithm to find the most similar items to generated action by actor-network. After that, the
Total Diversity Effect Ranking algorithm is used to generate the recommendation items
concerning relevancy and diversity. Moreover, we apply positional encoding to compute
representations of the user’s interaction sequence without using sequence-aligned recurrent
neural networks. Extensive experiments on the Movielens dataset demonstrate that our
proposed model is able to generate a diverse while relevance recommendation list based on
the user’s preferences.

Keywords: deep reinforcement learning, recommender system, diversity, approximate
nearest neighbor.
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Abstract

Software testability is the propensity of code to reveal its existing faults, particularly during
automated testing. Testing success depends on the testability of the program under test. On
the other hand, testing success relies on the coverage of the test data provided by a given test
data generation algorithm. However, little empirical evidence has been shown to clarify
whether and how software testability affects test coverage. In this article, we propose a
method to shed light on this subject. Our proposed framework uses the coverage of Software
Under Test (SUT), provided by different automatically generated test suites, to build machine
learning models, determining the testability of programs based on many source code metrics.
The resultant models can predict the code coverage provided by a given test data generation
algorithm before running the algorithm, reducing the cost of additional testing. The predicted
coverage is used as a concrete proxy to quantify source code testability. Experiments show an
acceptable accuracy of 81.94% in measuring and predicting software testability.

Keywords: Software testing, software testability, software analytics, software metrics,
machine learning.
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Fuzzy Optimal Control Approach in Low-Thrust
Orbit Transfer Problem

Aliakbar Razavi
Faculty of New Science and Technology, University of Tehran, Tehran, Iran
A.razavie8@ut.ac.ir

Amirreza Kosari
Faculty of New Science and Technology, University of Tehran, Tehran, Iran
Kosari a@ut.ac.ir

Abstract

In this paper, the optimal low thrust planar orbit transfer problem is solved utilizing a fuzzy
optimal control algorithm. Firstly, dynamic equations are presented in a discretized form, then
all the design variables and constraints are transformed to fuzzy space, while minimizing the
performance index and also satisfying transversallity conditions. Applying the concept of
membership functions based on expert experience, the designed cost function associated with
operational constraints are transformed to fuzzy relations through specific membership
functions. Applying Bellman-Zadeh approach, the optimal control problem can be converted
to a parameter optimization. Combining the performance index and problem’s constraints in
a scalar function, necessary optimality conditions are achieved in a form of nonlinear algebraic
equations. Finally, to solve this set of equations, the gradient-based method is used. In
comparison with the exact form of the problem, the efficiency of the proposed algorithm is
highlighted in terms of time and accuracy. In the fuzzy optimal control, a control designer could
take advantage of determining the allowed limit for cost function. This algorithm could be
successfully extended to fixed state or fixed control problems which is time-consuming in
scope of the classical optimal control.

Keywords: Low-Thrust Maneuver, Fuzzy Optimal Control, Minimum-Time Cost Function,
Minimum-Control Effort Cost Function, Transversality Condition.
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Abstract

Swarm robotics is an inspiration from nature and incorporates swarm intelligence to help
collective robotics. This recent technology is usually characterized by a swarm of simple, low-
cost, and small robots instead of a complicated and expensive robot. Designing optimal and
reliable swarm intelligence algorithms require real-world test environments. As a practical
solution, physical platforms can efficiently address this issue. In this paper, a programmable
physical platform, called SIN, is introduced for swarm robotics. Different design parameters
such as communication range, signaling pattern, types of sensors and actuators, cooperation
rules, and degree of uncertainty and noise can be simply adjusted by user. The building blocks
of each agent has been developed in a modular form to improve the hardware flexibility. To
illustrate the efficiency of the proposed platform, a cooperative multi-robot target tracking
problem is implemented on this platform as a case study, where the robots interact by artificial
attraction-repulsion forces based on short-range and noisy optical communication. The results
demonstrate how the details of swarm behaviors such as decentralized aggregation and
collective target tracking can be successfully implemented on the proposed platform.

Keywords: Swarm Robotics, Programmable Platform, Swarm Aggregation, Cooperative
Target Tracking.
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FT-LFSR: A Fault Tolerant Architecture for Linear
Feedback Shift Registers
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Abstract

Linear Feedback Shift Registers (LFSR) are extensively used in variety of applications such as
Built-In-Self-Test circuits or Pseudo Random Number Generators. Hence, fault tolerant design
of LFSR is essential for the applications with high reliability demands. Traditional fault tolerant
LFSRs include large number of Single-Point-of-Failures (SPoFs) in which any fault results in the
whole system failure. In this paper, a new fault tolerant architecture for LFSR (named as FT-
LFSR) is proposed in which the number of SPoFs are significantly reduced compared to the
previous ones. To this end, a modified version of Triple Modular Redundancy (TMR)
empowered with some extra controlling units for identifying the operational module is used.
In addition, a novel metric called Reliability-Area-Factor (RAF) is introduced to evaluate the
efficacy of the redundancy-based fault tolerant techniques (such as FT-LFSR) in terms of
number of SPoFs and the area overhead. Experimental results show that, the FT-LFSR is
resilient to all single transient and permanent faults except in its limited SPoFs and many
patterns of multiple faults.

Keywords: LFSR, Fault tolerance, FPGA, TMR, Test, Built in self test.
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A Network Intrusion Detection Approach at the
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Abstract

In addition to the feature of real-time analytics, fog computing allows detection nodes to be
located at the edges of the network. On the other hand, intrusion detection systems require
prompt and accurate attack analysis and detection. These systems must promptly respond
appropriately to an event. Increasing the speed of data transfer and response requires less
bandwidth in the network, reducing the data sent to the cloud and increasing information
security as some of the advantages of using detection nodes at the edges of the network in fog
computing. The use of neural networks in the analyzer engine is important for the low
consumption of system resources, avoidance of explicit production of detection rules,
detection of known deformed attacks, and the ability to manage noise and outlier data. The
current paper proposes and implements the architecture of network intrusion detection nodes
in fog computing, in addition to presenting the proposed fog network architecture. In the
proposed architecture, each node can, in addition to performing intrusion detection
operations, observe the nodes around it, find the compromised node or intrusion node, and
inform the nodes close to it to disconnect from that node.

Keywords: Fog Computing, Internet oF Things (loT), Network Security, Intrusion Detection,

Neural Network.
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An Improved Distributed Access Control Model
in Cloud Computing by Blockchain
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Abstract

With the ever-expanding digital communications and the need for advanced interoperability
and collaboration, organizations and entities need to share their digital assets. Cloud
computing is now widely used for managing and storing resources. Access control is a critical
issue, facing many challenges in distributed environments, including clouds. In this paper, we
present a model of the cloud access control system. Our distributed model utilizes a role-based
access control to enable the management of resources and the parties' access securely. We
provide interoperability between multiple organizations to access shared resources using
Ethereum Blockchain smart contracts and access levels for available resources. Roles define
access permissions; however, unlike the traditional role-based access control model, the roles
are determined according to the organizations involved' collaborative project, sometimes may
not exist in any organization. They can only be created in their interactions. Finally, for
evaluating its cost and time parameters. We use Ethereum smart contracts and deploy them
in the Ethereum test network called Rinkby.

Keywords: Access control, Blockchain, multi-authority, smart contracts.
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Abstract

An effective resource management, called scheduling, is essential for the performance of
large-scale distributed systems. One scheduling technique is gang scheduling, performing
scheduling for parallel jobs in gang type. In this paper, a new algorithm for gang scheduling is
proposed. This method aims to reduce the average response time of gangs by increasing the
serviceability of gangs in the shortest execution time possible. The performance of the
proposed algorithm is examined and compared to the basic gang scheduling algorithm within
the simulation. The results of the simulation indicated that the response time of the proposed
modification compared to the basic method is reduced up to 40% with low values of
multiprogramming and high pressure of workload (short inter-arrival time) in Adapted First
Come First Served and Largest Gang First Served policies.

Keyword: gang scheduling, large-scale systems, performance, simulation, parallel
processing.
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A Digital Maturity Model for digital banking
revolution for Iranian banks
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Abstract

A wide range of industries is facing a fundamental change: digital transformation. The banking
industry is no exception. However, despite such transformation being underway, there is a lack
of frameworks and tools to help banking providers navigate such radical change. This article
presents a new framework: the digital maturity model for digital banking providers. The model
aims to offer a structured view of digital transformation specific to the context and challenges
of digital banking. That can be used as a standard to help digital Banking providers benchmark
themselves against peers or themselves as they advance their transformation. This article
begins with a review of digital banking. A new definition of digital banking was introduced.
Digital transformation and digital maturity, and after that, the previous models were
investigated. And finally, a new model specific to digital banking in Iran.

Keywords: digital revolution, digital maturity, digital maturity model, digital banking.
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Abstract

today organizations encounter many issues such as newfound technologies, new business
models, and rapid changes. That is, following the evolutions in the global context, caused by
information and communication technology in the field of trade, industry, and specifically
information technology, organizations, companies, and particularly banks have undergone
changes and altered their reaction method to the market. In this way, the role of enterprise
architecture and using standards and reference models are crucial to the organizations.
Accordingly, organizations which want to be active in the digital transformation and move
towards digital banking should be able to implement an agile enterprise architecture and use
reference models such as BIAN .The objective of this article is to investigate the role of BIAN
standard in moving towards digital banking.

Keywords: Enterprise Architecture, Reference Models, Banking, Business Architecture
Industry Network (BIAN), Digital Transformation, Agility.
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Abstract

Handwritten digit classification considers one of the crucial subjects in machine vision due to
its numerous practical usages in many recognition systems. In this regard, Kannada-MNIST was
introduced as a challenging dataset. On the other hand, deep neural networks, especially
convolutional neural networks, give us an encouraging promise to solve such a problem. In this
paper, as a result, we propose a new hierarchically combination method with the help of two
CNN models designed from scratch. The results of this novel approach on the Kannada-MNIST
dataset indicate its excellent performance because the accuracy on the training, validation,
and test sets are 99.86%, 99.66%, and 99.80%, respectively. Fortunately, this proposed method
has been able to overcome all the state-of-the-art solutions with the best performance on this

dataset.

Keywords: hierarchically combination method, MNIST, Handwritten, deep convolutional
neural networks.
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Abstract

Graph structured data has become very popular and useful recently. Many areas in science
and technology are using graphs for modeling the phenomena they are dealing with (e.g.,
computer science, computational economics, biology, ...). Since the volume of data and its
velocity of generation is increasing every day, using machine learning methods for analyzing
this data has become necessary. For this purpose, we need to find a representation for our
graph structured data that preserves topological information of the graph alongside the
feature information of its nodes. Another challenge in incorporating machine learning methods
as a graph data analyzer is to provide enough amount of labeled data for the model which may
be hard to do in real-world applications. In this paper we present a graph neural network-based
model for learning node representations that can be used efficiently in machine learning
methods. The model learns representations in an unsupervised contrastive framework so that
there is no need for labels to be present. Also, we test our model by measuring its performance
in the task of community detection of graphs. Performance comparing on two citation graphs
shows that our model has a better ability to learn representations that have a higher accuracy
for community detection than other models in the field.

Keywords: Representation learning, Graph representation learning, Contrastive learning,
Community detection, Graph neural networks.
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Abstract

Identifying disease genes from a large number of candidate genes by laboratory methods is
very costly and time consuming, so it is necessary to prioritize disease candidate genes before
laboratory work. Recently, many gene prioritization methods have been proposed using
various datasets such as gene ontology and protein-protein interaction, which are often based
on text mining, machine learning, and random walk methods. Due to the good performance
and increasing use of deep graph networks in the representation of graph problems, in this
study, a method based on graph convolutional networks has been developed to represent the
graph on the protein-protein interaction. The results show that the proposed method is

effective and the performance of the proposed method better than other methods in some
cases.

Keywords: gene prioritization, protein-protein interaction, graph convolutional networks,
semi supervised leaning.
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Abstract

In bioinformatics, it remains challenging to predict important amino acid residues for the
binding amino acid residues regions and to perform binding region-based protein interactions.
The present method focused on predicting protein-peptide binding amino acid residues
regions using various distinct feature groups. Therefore, we employed machine learning
methods to predict the protein-peptide binding amino acid residues and protein-peptide
binding amino acid residues regions. Thus, predicting peptide-binding aminoacid residues
regions computationally is useful to improve the efficiency and cost-effectiveness of
experimental methods. The proposed method has three phases:pre-processing with
normalization, processing with classification algorithm, and post-processing with a clustering
algorithm. The proposed machine learning method of SVM+OPTICS achieves robust and
consistent results for the prediction of protein—peptide-binding amino acid residues regions in
terms of amino acid residues and regions.

Keywords: binding amino acid residues regions, proteinpeptide, structure, and sequence-

based features, binding amino acid residues, machine learning.
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Abstract

Recurrent neural networks (RNNs) utilize their internal state to handle variable length
sequences, as time series; namely here as uncertain failure rates of the systems. Failure rate
model of the components are required to improve systems reliability. Although the failure rate
model has undeniable importance systems reliability assessment, an acceptable failure rate
model has not been proposed to consider all causes of failures particularly random failures.
Therefore, planners and decision makers are susceptible to a high financial risk for their
decisions in the system. An approach is addressed to consider random failure rate along with
deteriorating failure rate, to ameliorate this risks, in this paper. Therefore, the complexity of
failure behavior is considered, while modeling considering the failure data as a time series.
Moreover, the results of failure rate estimation are tested on a reliability-centered
maintenance (RCM) implementation to prove the importance of random failure rate
consideration. The results express that a more effective strategy can be regarded for
preventive maintenance (PM) scheduling in RCM problem, when the proposed approach is
utilized for failure rate modeling.

Keywords: reliability assessment, failure rate, recurrent neural networks, reliability-
centered maintenance.
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Abstract

Traveling Salesman Problem (TSP), despite its simple appearance, is one of the classic and
complex problems in Combinatorial Optimization and it is difficult to find an accurate answer
for large samples. This problem is so important that many real-world problems can be turned
into a TSP and solved. Optimization methods for solving difficult problems, such as TSP, mainly
involve a large number of variables and constraints that reduce their practical efficiency in
solving large-scale problems. An optimization algorithm includes factors that increase the
speed of convergence, which can be inherited as a culture to the next generation. The basic
idea of cultural algorithms is based on the theory that in advanced societies, in addition to the
knowledge that parsons have in their genetic code and inherited from their ancestors, there is
another element called culture for evolution. Culture is a set of accepted beliefs of community
leaders. Of course, one of the disadvantages of this type of algorithm is the formation of a false
culture and the adherence of all people to the same culture, which occasionally leads to local
optimizations during the evolution process. The solution proposed in this paper to overcome
this shortcoming is to select diverse leaders and consequently produce different
subpopulations. This increases the diversity of people in the population and thus distributes
the search throughout the problem space, and breaks the problem into smaller problems, and
reduces the complexity of problem-solving temporality. In the meantime, cloud computing,
given scalability and accessibility, provides us with good facilities. Using the capabilities of cloud
computing, one problem can be divided into smaller sub-problems and solved in several virtual
machines. Each of the virtual machines uses the improved culture algorithm technique
proposed to solve their dedicated sub-problem. In the meantime, the nodes assigned to each
machine are hidden from the other machine. Finally, the result is obtained by combining the
results of all virtual machines, according to the proposed algorithm.

Keywords: Traveling Salesman Problem, Cultural Algorithm, Cloud Computing, NP-Hard
Problems.
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Abstract

In rock masses, presence of cracks greatly affects the behavior of it. Obtaining the cracks is
very important in specialized analysis of rock mechanics. In computer vision applications, crack
segmentation task in an intricate texture such as rock mass, is difficult. Crack segmentation
problem can consider as an edge detection task so we can use edge detection methods to
achieve it. In this paper, we propose a multiclassifier system based on deep convolutional
neural network (CNN) to predict pixel-wise cracks in rock mass images. We provide a dataset
consists of 489 RGB rock mass images with manual ground truths. For training classifiers, we
create two sub-datasets obtained by mentioned dataset. Also we introduce a new approach of
image labeling to improve general methods. Based on the results, our method achieves F-score
of 84.0, which has a best performance compared to different methods.

Keywords: computer vision, convolutional neural networks, multi-classifier, rock mass crack,
semantic segmentation.
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Abstract

ECG beats have a key role in the reduction of fatality rate arising from cardiovascular diseases
(CVDs) by using Arrhythmia diagnosis computer-aided systems and get the important
information from patient cardiac conditions to the specialist. However, the accuracy and speed
of arrhythmia diagnosis are challenging in ECG classification systems, and the existence of
noise, instability nature, and imbalance in heartbeats challenged these systems. Accurate and
on-time diagnosis of CVDs is a vital and important factor. So it has a significant effect on the
treatment and recovery of patients. In this study, with the aim of accurate diagnosis of CVDs
types, according to arrhythmia in ECG heartbeats, we implement an automatic ECG heartbeats
classification by using discrete wavelet transformation on db2 mother wavelet and SMOTE
oversampling algorithm as pre-processing level, and a classifier that consists of Convolutional
neural network and BLSTM network. Then evaluate the proposed system on MIT-BIH
imbalanced dataset, according to AAMI standards. The evaluations results show this approach
with 50 epoch training achieved 99.78% accuracy for category F, 98.85% accuracy for
category N, 99.43% accuracy for category S, 99.49% accuracy for category V, 99.87% accuracy
for category Q. The source code is available at https://gitlab.com/arminshoughi/cnnlstmecg

classification. Our proposed classification system can be used as a tool for the automatic
diagnosis of arrhythmia for CVDs specialists with the aim of primary screening of patients with
heart arrhythmia.

Keywords: Cardiovascular diseases, Convolutional neural network, Deep learning, Long
Short Term Memory, Electrocardiogram signals, Physio Bank MIT-BIH arrhythmia database,
AAMI.
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Abstract

In this paper, we analyzed different models of LSTM neural networks on the multi-step time-
series dataset. The purpose of this study is to express a clear and precise method using LSTM
neural networks for sequence datasets. These models can be used in other similar datasets,
and the models are composed to be developed for various multi-step datasets with the
slightest adjustment required. The principal purpose and question of this study were whether
it is possible to provide a model to predict the amount of electricity consumed by a house over
the next seven days. Using the specified models, we have made a prediction based on the
dataset. We also made a comprehensive comparison with all the results obtained from the
methods among different models. In this study, the dataset is household electricity
consumption data gathered over four years. We have been able to achieve the desired
prediction results with the least amount of error among the existing state-of-the-art models.

Keywords: LSTM, neural networks, time-series, forecasting.
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Abstract

In this paper, a deep learning approach is proposed based on a 3D Convolutional Neural
Network for the classification of gait abnormalities. Six gait classes are considered, including
Trendelenburg, Steppage, Stiff-legged, Lurching, and Antalgic gait abnormalities as well as
normal gait. The proposed scheme is applied to a recently-published dataset from the literature.
This dataset consists of the gait data recorded by multiple Microsoft Kinect v2 sensor from 25
joints of a person during walking on a specified walkway. In this dataset, for each of the 6 gait
classes, ten people have attended the data collection procedure; and for each participant, 120
walking instances have been recorded. Each instance includes the spatial and temporal
information of the walking, and it is converted to two 3D images, which respectively display the
changes of the Coronal (X-Z) and Sagittal (Y-Z) views of the originally captured data over time.
These two 3D images are used as the input of the proposed 3D convolutional neural network.
There are a total of 14400 3D images in this dataset. In order to demonstrate the accuracy of
the proposed approach, it is compared with four well-known neural classifiers from the
literature.

Keywords: Gait Abnormalities, Deep Learning, 3D Convolutional Neural Network,
Classification, Kinect Sensor.
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Abstract

The increasing number of vehicles, followed by traffic congestion, has posed a great challenge
to the optimal control of traffic for human societies. Therefore, in order to achieve sustainable
development in the field of integrated urban management, control of transportation networks
is inevitable. The proper method for optimal traffic control should certainly be adaptable in
order to be able to manage urban traffic that has a dynamic, complex and changeable nature.
In this regard, the method of reinforcement learning that does not require a mathematical
model of the environment is very important. In this paper, an intelligent method for controlling
urban traffic based on reinforcement learning is presented in which a 4-way intersection is
modeled with two different scenarios for low and high traffic congestion. The results obtained
after repeated experiments of implementing the proposed method and also its improved
model on the mentioned intersection show that the amount of travel time delay has been
reduced compared to the usual fixed time methods. After comparing with the two fixed time
methods, the waiting time of vehicles at the intersection is 15% and 86% improved for the
scenario with low and high traffic congestion respectively, compared to the first method and
37% and 16% compared to the second method.

Keywords: Intelligent transportation system, Reinforcement learning, Q-Learning.
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Abstract

Multimodal attention mechanisms in computer vision applications enable rich feature
extraction by attending to specific image regions, highlighted through a second mode of data
regarded as auxiliary information. The correspondence between image regions and auxiliary
data can be defined as the similarity between parts of the two modes. In this paper, we propose
a similarity measure that maximizes the posterior for matching high-level object attributes with
image regions. In contrast to previous methods, we rely on attribute space rather than textual
descriptions. We evaluate our results on the CUB dataset. The results show that the proposed
method better minimizes the similarity loss function compared to the textimage similarity
measurement.

Keywords: similarity measure, multimodal attention, convolutional neural networks,

recurrent neural networks.
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Abstract

Network slicing is a promising approach to meet the diverse requirements of the various use
cases in the 5G networks. Hence, the mobile operators are moving forward to leveraging
network slicing in order to measure up with the individual service expectations in their
networks. Deploying different network slice types requires the global view of the network and
the automated orchestration and management of the underlying resources. This is facilitated
by utilizing software-defined networking and network function virtualization as the 5G key-
enabler technologies. In this paper, we propose a practical network slicing resource
management scheme which is comprised of a dynamic, priority-based resource allocation
cooperating with an admission control unit. Adopting the proposed dynamic resource allocation
would allow the admission control to comply with more NS requests while ensuring the desired
requirements of the existing network slices. To validate the effectiveness of such a mechanism
in a real environment, we take advantage of the features provided by OpenAirinterface and
FlexRAN to efficiently manage multiple isolated network slices. In particular, we evaluate the
significance of the network slicing, the isolation degree among created slices, and the
effectiveness of the proposed scheme through several practical scenarios.

Keywords: Network Slicing, 5G, Dynamic resource management, Admission control.
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Abstract

Today, social networks and messengers have attracted the attention of many different
businesses. Every day, a lot of information is produced in these environments. Analyzing this
information is very useful for connecting different businesses. This information is very valuable
for marketers to find the target community. Telegram is a messenger based on cloud
computing. This messenger is used as a social network in some countries, including Iran.
Telegram, while used as a social network, does not offer all the capabilities of a social network.
The capabilities provided in this messenger include creating a channel, group, and bot. The
shortfall in most messengers, such as Telegram, is the limited search service of groups and a
community of users. In this paper, we have recommended groups according to the users '
interests, using the graph of users' membership and analyzing their membership records. The
proposed method, considering the users' status, models their records in each group. We
obtained users’ migration by analyzing their records in each group. Users' migration is analyzed
based on the maximum number of users leaving each group and entering another group. In this
study, information about 70 million users and 700,000 Telegram supergroups have been used.
The evaluation of the proposed model has been done on 30 high-quality groups in Telegram.
Selected groups had between 5,000 and 15,000 members. The proposed method showed an
error reduction of 0.0237 in RMSE compared to a base method.

Keywords: Telegram, Social networks, Recommender system, Membership graph, Users'
migration.
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Abstract

The rapid production of data on the internet and the need to understand how users are feeling
from a business and research perspective has prompted the creation of numerous automatic
monolingual sentiment detection systems. More recently however, due to the unstructured
nature of data on social media, we are observing more instances of multilingual and codemixed
texts. This development in content type has created a new demand for code-mixed sentiment
analysis systems. In this study we collect, label and thus create a dataset of Persian-English
code-mixed tweets. We then proceed to introduce a model which uses BERT pretrained
embeddings as well as translation models to automatically learn the polarity scores of these
Tweets. Our model outperforms the baseline models that use Naive Bayes and
Random Forest methods.

Keywords: code-mixed language, sentiment analysis, Persian-English text.
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Abstract

The dominating set (DS) problem has noticed the selecting a subset of vertices that every vertex
in the graph is either is adjacent to one or more nodes of this subset. The DS with the minimum
cardinality is called MDS (minimum dominating set). The MDS problem has several applications
in different domains, such as network monitoring, routing, epidemic control and social network.
The MDS is known as the NP-Hard problem. Nevertheless, the existing research has focused on
the MDS problem to single networks. However, in many real structures, there exist a complex
structure involving a set of components combined up by different connections and known as
multiplex networks. In this paper, we introduce a learning automaton (LA) based algorithm for
find the MDS problem in multiplex networks. In the proposed algorithm, each node of the
multiplex network is considered an LA with two actions of a candidate or non-candidate
corresponding to the dominating set and non-dominating set. By selecting candidate DS and
evaluation mechanisms, the algorithm tries to find a dominating set with the smallest cardinality
and as the algorithm proceeds, a candidate solution converges to the optimal solution of the
MDS of multiplex networks. With the aid of learning and the behavior of learning automata for
finding solution, this algorithm which is present in this paper reduces the number of dominating
set, in multiplex networks iteratively. Experimental results demonstrate that in many well-
known datasets, the proposed algorithm is efficient with respect to the evaluation measure.

Keywords: Multiplex Social Network, Dominating set, Learning Automata, Cellular Learning
Automata.
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Abstract

Online Social Networks (OSNs) attracted millions of users in the world. OSNs made adversaries
more passionate to create malware variants to subvert the cyber defence of OSNs. Through
various threat vectors, adversaries persuasively lure OSN users into installing malware on their
devices at an enormous scale. One of the most horrendous forms of named malware is OSNs'
botnets that conceal C&C information using OSNs' accounts of unaware users. In this paper, we
present GITC (Ghost In The Cloud), which uses Telegram as a C&C server to communicate with
threat actors and access targets' information in an undetectable way. Furthermore, we present
our implementation of GITC. We show how GITC uses the encrypted telegram Application
Programming Interface (API) to cover up records of the adversary connections to the target,
and we discuss why current intrusion detection systems cannot detect GITC. In the end, we run
some sets of experiments that confirm the feasibility of GITC.

Keywords: Malware, Botnet, Telegram, OSNs, threat, C&C, undetectable, Serverless.
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Abstract

Since the beginning of the COVID-19 pandemic, many lives are in danger. According to WHO
(World Health Organization)'s statements, breathing without a mask is highly dangerous in
public and crowded places. Indeed, wearing masks reduces the chance of being infected, and
detecting unmasked people is a waste of resources if not performed automatically. Al
techniques are used to increase the detection speed of masked and unmasked faces. In this
research, a novel dataset and two different methods are proposed to detect masked and
unmasked faces in real-time. In the first method, an object detection model is applied to find
and classify masked and unmasked faces. In the second method, a YOLO face detector spots
faces (whether masked or not), and then the faces are classified into masked and unmasked
categories with a novel fast yet effective CNN architecture. By the methods proposed in this
paper, the accuracy of 99.5% is achieved on the newly collected dataset.

Keywords: mask detection, object detection, classification, YOLO, covid-19, pandemic, real-
time.
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Abstract

This paper proposes an equation based on a nonlinear filter for speckle noise removal by
introducing a region indicator. The use of Gaussian convolution in the proposed region
indicator makes the quality of the edges of the image better than other models. The proposed
equation also removes noise well due to having a nonlinear filter while preserving important

image details such as edges. Experimental results show that the proposed model can handle
speckle noise removal quite well.

Keywords: nonlinear filter, speckle noise removal, region indicator, Gaussian convolution.
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Abstract

There exist a lot of data associated with psychology, nowadays. Using data mining science, the
relation between different subjects including self-esteem, general health, depression, etc. can
be detected. Self-esteem is considered a subject of great importance in psychology, since it is
one of the most significant factors in favorable human growth which shows how one feels
about his worthiness and self-confirmation. Depression is a psychic state which is identified by
the person’s unhappiness over time. Mental health, which is a significant moderator in the
process of stress, plays a vital role in mitigating stress, increasing health, and improving the
quality of life in the society. In order that the level of self-esteem would be measured, special
guestionnaires are used. Proper and accurate analysis of the questionnaires is one of the
challenges of psychology. Several efforts have been made to improve the quality of processing
psychological data by using through artificial intelligence. In the present paper, the relation
between self-esteem and general health has been analyzed using Coopersmith’s self-esteem
guestionnaire, Goldberg’s general health questionnaire, clustering algorithms, and semantic
data mining techniques. The results have shown that low self-esteem has a weak relationship
with three out of four general health subscales; however, there has been a strong relationship
with three subscales in high self-esteem levels.

Keywords: data mining, clustering, k-means, psychology, self-esteem, general health care,
depression.
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Abstract

Neuro-fuzzy systems have been proved effective in training classifiers, especially when it
comes to noisy, inaccurate or incomplete datasets. For this reason, and due to their simple
comprehensible nature, these systems have become popular in designing classifiers. One of
the major challenges in designing a neuro-fuzzy classifier is achieving the optimum system
parameters such as the type and position of the membership function as well as its training
method. These factors could affect the function of the classifier significantly. In this paper, a
novel method based on evolutionary algorithms such as inclined planes optimization algorithm
(IPO), particle swarm optimizer (PSO) and genetic algorithm (GA) is introduced to design a
neuro-fuzzy classifier in such a way that the accuracy is increased and the error rate is
minimized. To prove the efficiency of the proposed method, several experiments are
conducted on well-known datasets with different number of classes and different feature
vector lengths. Results indicate that the proposed evolutionary-based neuro-fuzzy classifier is
superior to a normal neuro-fuzzy classifier in terms of accuracy. In addition, experiments
showed that the proposed method is able to properly classify the data with a relatively high
stability.

Keywords: pattern recognition, neuro-fuzzy classifier, evolutionary algorithm.
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Abstract

Recommender systems help people in finding a particular item based on their preference from
a wide range of products in online shopping rapidly. One of the most popular models of
recommendation systems is the Collaborative Filtering Recommendation System (CFRS) that
recommend the top-K items to active user based on peer grouping user ratings. The
implementation of CFRS is easy and it can easily be attacked by fake users and affect the
recommendation. Fake users create a fake profile to attack the RS and change the output of it.
Different attack types with different features and attacking methods exist in which decrease
the accuracy. It is important to detect fake users, remove their rating from rating matrix and
recognize the items has been attacked. In the recent years, many algorithms have been
proposed to detect the attackers but first, researchers have to inject the attack type into their
dataset and then evaluate their proposed approach. The purpose of this article is to develop a
tool to inject the different attack types to datasets. Proposed tool constructs a new dataset
containing the fake users therefore researchers can use it for evaluating their proposed attack
detection methods. Researchers could choose the attack type and the size of attack with a user
interface of our proposed tool easily.

Keywords: Recommender Systems, Attack Type, Collaborative Filter, Tool, Fake user,
Shilling Attack.
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Abstract

Click-Through Rate (CTR) prediction plays a critical role in online advertisement campaigns and
recommendation systems. Most of the state-of-the-art models are based on Factorization
Machines and some of these models try to feed mapped field features to a deep learning
component for learning users’ interests by modelling feature interactions. Deploying a model
for CTR is an online task and should be able to perform well with a limited amount of data and
time. While these models are very good at prediction inferences and learning feature
interactions, their deep component needs a vast amount of data and time and does not
perform well in limited situations.

In a recent article, a combination of boosting algorithms with deep factorization machines
(XDBoost algorithm) has been proposed. In this paper, we use a boosting algorithm for
prediction inference with limited raw data and time. We show that with an appropriate feature
engineering and fine parameter tuning for a raw boosting model, we can outperform XDBoost
method and get better results. We will use exploratory data analysis to extract the main
characteristics of the dataset and eliminate the redundant data. Then, by applying grid search
scheme, we select the best values for the hyperparameters of our model.

Keywords: Click-Through Rate prediction; XGBoost; Online advertising.
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Abstract

Reusability is one of the most important objectives in software development and especially, in
software product line (SPL) engineering, involving analysis, design, implementation, testing,
and maintenance activities. Therefore, in software product line testing, as well as other
activities, it is crucial that we pay special attention to reusability. In SPL testing, reusability can
be defined and measured in different ways. In this paper, we first introduce four different
reusability metrics for SPL testing (SPLT); and then, as a first step toward improving reusability
in SPLT, we experimentally examine how a search-based software testing (SBST) approach for
optimizing an existing SPL domain test suite can affect (improve) two of the proposed
reusability metrics. The results of the experimentation on 20 SPL feature models of size 5000
showed a significant improvement in the two selected test reusability metrics, namely, TSRR
(test suite reusability regarding test requirements) and TCRR (test case reusability regarding
test requirements) in optimized solutions compared with nonoptimized solutions.

Keywords: reusability, software product line, search-based software testing, test suite

optimization, experimentation.
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Abstract

The software design phase is important and challenging due to its high impact on other phases
of software development life cycle. Design pattern is a proven solution based on software
developers’ experience to solve recurring problems, which used to acquire quality software
design. However, the large number of design patterns has made it difficult to select the right
one for a particular design problem. To overcome this difficulty, several approaches with
different methods have been proposed to automate the design pattern selection process. The
purpose of this paper is to suggest a framework called “DPSA” which includes the classification
of existing approaches, a comparison between approaches based on provided criteria, and also
analyzing each approach based on these criteria. DPSA helps future research to a) employing
the existing approaches taking into account the specification of each one and b) comparing the
current works with the future.

Keywords: software design, design pattern selection, design problem.
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Abstract

The software design phase is important and challenging due to its high impact on other phases
of the software development life cycle. Design patterns are proven solutions based on software
developers' experience to solve recurring problems, which used to acquire quality software
design. However, selecting an appropriate design pattern is quite difficult. Hence, many studies
have been done to automate the design pattern selection process. The existing automated
design pattern selection methodologies have certain issues such as the need to have a large
sample size, user restrictions on selecting preset concepts, time-consuming, and
incomprehensiveness. To address these issues in this paper, a two-phase method for selecting
an appropriate design pattern is presented. The proposed method is based on an ontology
approach that enables domain knowledge to be modeled in a simple and abstract way and
enables queries to be evaluated against a knowledge base. The concepts of ontology are then
linked to WordNet. Subsequently, a dataset includes use cases that can be satisfied with GOF
design patterns is provided. The set of use cases is then processed in such a way as to make it
easy and fast to select the concept-constraint pair to query the ontology. The experimental
shows promising and effective results of the proposed method.
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